
11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]



11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]



11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]



11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]



11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]



11/15/21, 11'21 AMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/211117/selection-1-2021.html

15-295 Fall 2021 #12 Selection Round 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Horrid Sorting
3 s., 1024 MB

You are given an array  which contains a permutation of the numbers . Your goal is to
sort the array by repeatedly applying the following operation:

Pick two indices  and  such that , and then swap the values of  and .

For example, we can sort the array  in two operations:

1. Swap  and . The array becomes .
2. Swap  and . The array becomes  which is sorted.

Your goal is to compute the minimum number of operations to sort a given array in ascending order.

Input
The first line is . . The second line is the permutation .

Output
Output the minimum number of operations required to sort the given array.

input
3
1	3	2

[ , , … , ]!1 !2 !" 1, 2, … "

# $ | − | = 1!# !$ !# !$

[2, 3, 1]
!1 !3 [1, 3, 2]
!2 !3 [1, 2, 3]

" 1 < " ≤ 2 × 105 , , … ,!1 !2 !"

output
1

B. Everything must be Monitored
2 s., 1024 MB

You're given a tree of  nodes. The goal is to ensure that the entire tree – including all of its vertices and edges
– is monitored. To do so you place measurement devices (MDs) at a subset of nodes. The MDs induce a
cascade of monitoring, as explained below.

So given a tree with some placement of MDs on the nodes (and no nodes or edges initially monitored), apply
the following rules, labeling more and more nodes and edges as monitored, until the rules no longer apply
anywhere.

A node with an MD is monitored.
All edges incident to a node with an MD are monitored.
If an edge is monitored, so are both of its nodes.
If both nodes at the ends of an edge are monitored, then so is that edge.
If a node of degree  is monitored, and  of its edges are monitored, then the last of its edges is
also monitored.

This process, because it is Church-Rosser, is guaranteed to converge to a final and unique state for any tree
and any placement of the MDs.

The goal is to compute the minimum number of MDs that must be placed on the nodes of the tree to ensure
that the entire tree (all nodes and edges) is monitored.

Input
The first line of input contains  ( ) the number of nodes in the tree. Each of the next  lines
contain two numbers  and , the nodes at the ends of an edge of the tree ( ). These edges are
guaranteed to form a tree of nodes .

Output
Output just one number – the minimum number of measurement devices that must be placed in the tree to
ensure that it's fully monitored.

input
10
8	9
8	10
1	2
4	5
4	6
6	7
6	8
2	4
2	3

input
5
1	5
1	4
1	2
1	3

The first example corresponds to the figures below. The nodes with measurement devices are shown in red.
The first figure is a configuration where everything is monitored with two measurement devices. In the second
figure, the placement of measurement devices is not sufficient to monitor the entire tree.

"

% ≥ 2 % − 1

" 2 ≤ " ≤ 105 " − 1
&# '# 1 ≤ , ≤ "&# '#

1, … , "

output
2

output
1

C. Alternation is the Key
3 s., 1024 MB

You're given a sequence of  bits, denoted . The subsequence from  to  (with )
is . Such a subsequence is said to be alternating if . For example  is an
alternating subsequence of , with  and .

In this problem, two types of operations will be applied to the given array:

: for every , change  into .
: report the total number of pairs  such that  where subsequence 

 is an alternating subsequence.

Your program will implement these operations.

Input
The first line contains two integers  and  (with ) indicating the length of the given
sequence and the number of operations. The second line contains , the initial contents of the
array of bits. Then  lines follow, and the -th of them contains  integers  where the -th operation is 

. (  and )

Output
For each operation of the second type, output the required number on one line.

input
4	4
0	0	0	0
2	1	4
1	2	2
2	1	4
2	2	3

" , , … ,&1 &2 &" ( ) 1 ≤ ( ≤ ) ≤ "
, … ,&( &) ≠ ≠ ⋯ ≠&( &(+1 &) 1, 0, 1

1, 1, 0, 1, 1 ( = 2 ) = 4

1 ( ) # ∈ [(, )] &# 1 − &#
2 ( ) (*, +) ( ≤ * ≤ + ≤ )

, , … ,&* &*+1 &+

" , 1 ≤ ", , ≤ 2 × 105

, , … ,&1 &2 &"
, # 3 , ,-# (# )# #

  -# (# )# 1 ≤ ≤ 2-# 1 ≤ ≤ ≤ "(# )#

output
4
7
3

D. Line, Meet Squares
2 s., 512 MB

You're given a collection of  squares in the plane, along with a line. The goal is to count the number of
intersections between the line and the boundaries of the squares.

More specifically, for each  in  a square with these four corners is generated: 
. And for that set of squares, a set of  query lines is specified, and for each you

must compute the intersection count.

Input
The first line contains  and , where  and . Each of the following  lines contains
four integers , representing two points  and . The line through these two points
is the one for which you must count intersections with the  squares. All of these coordinates are in the range 

. These two points are not equal, and also the line through the two points must not have slope 
or . (That is .)

Output
For each line indicated, compute the number of times it intersects the  square boundaries. See the examples
below.

input
5	12
4	4	1	-2
0	0	-3	1
-1	0	1	0
7	0	0	6
5	1	-2	-1
-5	1	-4	1
4	-5	-3	-5
2	1000000000	0	-1000000000
2	999999999	0	-1000000000
2	1000000000	0	-999999999
1000000000	1000000000	-999999998	-1000000000
1000000000	1000000000	-999999997	-1000000000

The first example is shown below.

"

# [1, "]
(#, 0), (0, #), (−#, 0), (0, −#) ,

" , 1 ≤ " ≤ 109 1 ≤ , ≤ 105 ,
, , ,*1 +1 *2 +2 ( , )*1 +1 ( , )*2 +2

"
[− , ]109 109 1

−1 | − | ≠ | − |*1 *2 +1 +2

"

output
7
10
10
0
10
9
1
9
8
10
9
8

E. Imperfect Numbers
0.5 s, 1024 MB

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors,
excluding the number itself. For instance,  has divisors ,  and , and , so  is a perfect
number. In this problem, numbers where the sum is too small are deficient, and numbers where the sum is too
large are abundant.

You are given a list of positive integers your program should classify them accordingly.

Input
The first line of the input contains one positive integer  indicating the number of test cases. The second line
of the input contains  positive integers . We have .

Output
Output  lines, one for each  in the input. See the example.

input
3
28	12	1

6 1 2 3 1 + 2 + 3 = 6 6

.
. , … ,"1 ". 1 ≤ , . ≤"# 106

. "#

output
perfect
abundant
deficient

F. Flakey Ball Placement
1 s., 1024 MB

There are  balls numbered  about to be sequentially placed into bins numbered  by a
machine. For ball  the machine places it into a random bin that is not bin . For each of balls  the
machine tries to place the ball into the bin with its number. If that bin is occupied, it places the ball into a
randomly chosen empty bin. (Whenever the machine makes a random choice, all of its viable options are
equally probable.)

What's the probability that ball  is placed into some bin other than ?

Input
The input contains the integer  with .

Output
Output the required probability with an absolute error of at less than .

input
2

input
3

input
4

" 1, 2, … , " 1, … , "
1 1 2, … , "

" "

" 2 ≤ " ≤ 300

10−6

output
1.00000000

output
0.75000000

output
0.66666667

G. Monotonic Tree Paths
5 s., 1024 MB

You're given an unrooted tree  of  nodes and  bi-directional edges. Each edge is labeled with a (not
necessarily unique) number. The problem is to compute the number of simple (non-self-intersecting) paths of
at least one edge such that the sequence of labels on that path is strictly increasing. The paths under
consideration may start and end at any pair of distinct vertices.

Input
The first line contains . The next  lines contain three integers , where  is one end of an edge
and  is the other end, and  is the label on that edge. Here , , and 

. The edges, of course, must form a tree.

Output
Output the number of distinct simple paths with strictly increasing labels.

input
3
2	3	19
1	2	8

input
5
1	4	9
1	2	6
2	3	6
5	4	9

In the first example, the five paths are , , , , and .

. " " − 1

" " − 1 , ,&# '# /# &#
'# /# 1 ≤ " ≤ 2 × 105 1 ≤ , ≤ "&# '#

0 ≤ ≤/# 109

output
5

output
9

[1, 2] [2, 1] [2, 3] [3, 2] [1, 2, 3]


