
2/27/19, 5)03 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
1 second, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input
5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output

1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output

2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input
5	2
1	2
2	3
3	4
2	5

input
5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output
2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input
2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input
4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output
1	3
-1	-1

output
0	4
-1	-1
-1	-1
0	2
0	2

F. Tree or not Tree
5 seconds, 256 megabytes

You are given an undirected connected graph G consisting of n vertexes and n edges. G contains no self-loops or multiple
edges. Let each edge has two states: on and off. Initially all edges are switched off.

You are also given m queries represented as (v, u) — change the state of all edges on the shortest path from vertex v to
vertex u in graph G. If there are several such paths, the lexicographically minimal one is chosen. More formally, let us
consider all shortest paths from vertex v to vertex u as the sequences of vertexes v, v , v , ..., u. Among such sequences
we choose the lexicographically minimal one.

After each query you should tell how many connected components has the graph whose vertexes coincide with the
vertexes of graph G and edges coincide with the switched on edges of graph G.

Input
The first line contains two integers n and m (3 ≤ n ≤ 10 , 1 ≤ m ≤ 10). Then n lines describe the graph edges as a b
(1 ≤ a, b ≤ n). Next m lines contain the queries as v u (1 ≤ v, u ≤ n).

It is guaranteed that the graph is connected, does not have any self-loops or multiple edges.

Output
Print m lines, each containing one integer — the query results.

input
5	2
2	1
4	3
2	4
2	5
4	1
5	4
1	5

input
6	2
4	6
4	3
1	2
6	5
1	5
1	4
2	5
2	6

Let's consider the first sample. We'll highlight the switched on edges blue on the image.

The graph before applying any operations. No graph edges are switched on, that's why there initially are 5 connected
components.

The graph after query v = 5, u = 4. We can see that the graph has three components if we only consider the switched
on edges.

The graph after query v = 1, u = 5. We can see that the graph has three components if we only consider the switched
on edges.

Lexicographical comparison of two sequences of equal length of k numbers should be done as follows. Sequence x is
lexicographically less than sequence y if exists such i (1 ≤ i ≤ k), so that x  < y , and for any j (1 ≤ j < i) x  = y .

1 2

5 5

output
3
3

output
4
3

i i j j

Another sample input/output is available on-line.

2/27/19, 5)03 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
1 second, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input
5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output

1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output

2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input
5	2
1	2
2	3
3	4
2	5

input
5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output
2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input
2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input
4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output
1	3
-1	-1

output
0	4
-1	-1
-1	-1
0	2
0	2

F. Tree or not Tree
5 seconds, 256 megabytes

You are given an undirected connected graph G consisting of n vertexes and n edges. G contains no self-loops or multiple
edges. Let each edge has two states: on and off. Initially all edges are switched off.

You are also given m queries represented as (v, u) — change the state of all edges on the shortest path from vertex v to
vertex u in graph G. If there are several such paths, the lexicographically minimal one is chosen. More formally, let us
consider all shortest paths from vertex v to vertex u as the sequences of vertexes v, v , v , ..., u. Among such sequences
we choose the lexicographically minimal one.

After each query you should tell how many connected components has the graph whose vertexes coincide with the
vertexes of graph G and edges coincide with the switched on edges of graph G.

Input
The first line contains two integers n and m (3 ≤ n ≤ 10 , 1 ≤ m ≤ 10). Then n lines describe the graph edges as a b
(1 ≤ a, b ≤ n). Next m lines contain the queries as v u (1 ≤ v, u ≤ n).

It is guaranteed that the graph is connected, does not have any self-loops or multiple edges.

Output
Print m lines, each containing one integer — the query results.

input
5	2
2	1
4	3
2	4
2	5
4	1
5	4
1	5

input
6	2
4	6
4	3
1	2
6	5
1	5
1	4
2	5
2	6

Let's consider the first sample. We'll highlight the switched on edges blue on the image.

The graph before applying any operations. No graph edges are switched on, that's why there initially are 5 connected
components.

The graph after query v = 5, u = 4. We can see that the graph has three components if we only consider the switched
on edges.

The graph after query v = 1, u = 5. We can see that the graph has three components if we only consider the switched
on edges.

Lexicographical comparison of two sequences of equal length of k numbers should be done as follows. Sequence x is
lexicographically less than sequence y if exists such i (1 ≤ i ≤ k), so that x  < y , and for any j (1 ≤ j < i) x  = y .

1 2

5 5

output
3
3

output
4
3

i i j j

2/27/19, 5)03 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
1 second, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input
5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output

1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output

2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input
5	2
1	2
2	3
3	4
2	5

input
5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output
2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input
2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input
4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output
1	3
-1	-1

output
0	4
-1	-1
-1	-1
0	2
0	2

F. Tree or not Tree
5 seconds, 256 megabytes

You are given an undirected connected graph G consisting of n vertexes and n edges. G contains no self-loops or multiple
edges. Let each edge has two states: on and off. Initially all edges are switched off.

You are also given m queries represented as (v, u) — change the state of all edges on the shortest path from vertex v to
vertex u in graph G. If there are several such paths, the lexicographically minimal one is chosen. More formally, let us
consider all shortest paths from vertex v to vertex u as the sequences of vertexes v, v , v , ..., u. Among such sequences
we choose the lexicographically minimal one.

After each query you should tell how many connected components has the graph whose vertexes coincide with the
vertexes of graph G and edges coincide with the switched on edges of graph G.

Input
The first line contains two integers n and m (3 ≤ n ≤ 10 , 1 ≤ m ≤ 10). Then n lines describe the graph edges as a b
(1 ≤ a, b ≤ n). Next m lines contain the queries as v u (1 ≤ v, u ≤ n).

It is guaranteed that the graph is connected, does not have any self-loops or multiple edges.

Output
Print m lines, each containing one integer — the query results.

input
5	2
2	1
4	3
2	4
2	5
4	1
5	4
1	5

input
6	2
4	6
4	3
1	2
6	5
1	5
1	4
2	5
2	6

Let's consider the first sample. We'll highlight the switched on edges blue on the image.

The graph before applying any operations. No graph edges are switched on, that's why there initially are 5 connected
components.

The graph after query v = 5, u = 4. We can see that the graph has three components if we only consider the switched
on edges.

The graph after query v = 1, u = 5. We can see that the graph has three components if we only consider the switched
on edges.

Lexicographical comparison of two sequences of equal length of k numbers should be done as follows. Sequence x is
lexicographically less than sequence y if exists such i (1 ≤ i ≤ k), so that x  < y , and for any j (1 ≤ j < i) x  = y .

1 2

5 5

output
3
3

output
4
3

i i j j

NCPC 2014
Problem F

Particle Swapping
Problem ID: particles

From flickr under Creative Commons licence, by Tom Fassbender

The research team of prof. Feynmansson is prepar-
ing a new groundbreaking experiment in particle
physics. On a special plate they have prepared a system
consisting of a number of nodes connected via wires2.
In the beginning of the experiment a pair of particles
appears at two different nodes of the system: one nor-
mal particle of matter appears at some node A, and one
corresponding particle of antimatter appears at some
node B. The goal of the experiment is to swap these
particles, i.e., to arrive at a state where the normal par-
ticle is at node B and the antiparticle is at node A. This
state should be reached by a sequence of moves, where
each move consists of transmitting one of the particles
from its current location to a neighbouring node via a
wire.

As you probably remember from popular science TV programmes, playing with matter and
antimatter is usually not that safe. In particular, if particles of matter and antimatter get too
close to each other, they will annihilate each other blowing up the whole experiment. Therefore,
the research team would like to swap the locations of the particles in such a manner that the
minimum Euclidean distance between them during the experiment is as large as possible. This
minimum distance is called the safeness of the experiment. For simplicity, we assume that while
a particle is transmitted via a wire we do not consider its location; in other words, the only risky
moments during the experiment are when both particles are at some nodes. You may assume
that it is always possible to swap the particles with positive safeness, that is, so that the particles
are never placed at the same node during swapping.

Another catch is that the physicists do not know precisely where the particles will appear.
They have made a list of potential pairs of initial locations (A,B), and for each of them they
would like to know the maximum possible safeness of swapping the particles. Help them in this
task.

Input
The first line of the input contains a single integer n (1 n 500), denoting the number of nodes
in the system. Then follow n lines, each containing two integers x, y (�10 000 x, y 10 000);
the numbers in the i-th line denote the coordinates on the plate of the i-th node. No two nodes
are located at the same point.

The next line of the input contains a single integer m (0 m 2 000), denoting the number
of wires in the system. Then follow m lines; each line contains a description of a wire as a pair
of integers a, b (1 a, b n, a 6= b), denoting the indices of the nodes that are connected by
the wire. You may assume that no two nodes are connected by more than one wire, and no wire
connects a node with itself.

2The wires may cross each other on the plate.

NCPC 2014 Problem F: Particle Swapping 11

D

NCPC 2014
The next line of the input contains a single integer ` (1 `

�
n
2

�
), denoting the length

of the list of potential initial positions prepared by the physicists. Then follow ` lines, each
containing two integers a, b (1 a, b n, a 6= b), denoting the indices of the initial nodes A
and B, respectively.

Output
Output exactly ` lines. The i-th line of the output should contain a single floating point number,
being the maximum possible safeness for the i-th pair of initial positions listed by the physicists.
Absolute or relative errors of value at most 10�6 will be tolerated.

Sample Input 1 Sample Output 1

6

0 0

-1 3

-1 0

-1 -3

3 0

0 1

6

1 2

2 3

3 4

4 1

1 5

5 6

5

6 5

2 4

2 6

3 6

4 6

1.00000000

3.16227766

2.23606798

1.41421356

3.16227766

NCPC 2014 Problem F: Particle Swapping 12

2/27/19, 5)03 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
1 second, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input
5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output

1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output

2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input
5	2
1	2
2	3
3	4
2	5

input
5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output
2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input
2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input
4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output
1	3
-1	-1

output
0	4
-1	-1
-1	-1
0	2
0	2

F. Tree or not Tree
5 seconds, 256 megabytes

You are given an undirected connected graph G consisting of n vertexes and n edges. G contains no self-loops or multiple
edges. Let each edge has two states: on and off. Initially all edges are switched off.

You are also given m queries represented as (v, u) — change the state of all edges on the shortest path from vertex v to
vertex u in graph G. If there are several such paths, the lexicographically minimal one is chosen. More formally, let us
consider all shortest paths from vertex v to vertex u as the sequences of vertexes v, v , v , ..., u. Among such sequences
we choose the lexicographically minimal one.

After each query you should tell how many connected components has the graph whose vertexes coincide with the
vertexes of graph G and edges coincide with the switched on edges of graph G.

Input
The first line contains two integers n and m (3 ≤ n ≤ 10 , 1 ≤ m ≤ 10). Then n lines describe the graph edges as a b
(1 ≤ a, b ≤ n). Next m lines contain the queries as v u (1 ≤ v, u ≤ n).

It is guaranteed that the graph is connected, does not have any self-loops or multiple edges.

Output
Print m lines, each containing one integer — the query results.

input
5	2
2	1
4	3
2	4
2	5
4	1
5	4
1	5

input
6	2
4	6
4	3
1	2
6	5
1	5
1	4
2	5
2	6

Let's consider the first sample. We'll highlight the switched on edges blue on the image.

The graph before applying any operations. No graph edges are switched on, that's why there initially are 5 connected
components.

The graph after query v = 5, u = 4. We can see that the graph has three components if we only consider the switched
on edges.

The graph after query v = 1, u = 5. We can see that the graph has three components if we only consider the switched
on edges.

Lexicographical comparison of two sequences of equal length of k numbers should be done as follows. Sequence x is
lexicographically less than sequence y if exists such i (1 ≤ i ≤ k), so that x  < y , and for any j (1 ≤ j < i) x  = y .

1 2

5 5

output
3
3

output
4
3

i i j j

2/27/19, 10)53 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
2.0 s, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input

5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output
1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output
2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input

5	2
1	2
2	3
3	4
2	5

input

5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output

2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input

2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input

4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output

1	3
-1	-1

output

0	4
-1	-1
-1	-1
0	2
0	2

F. Tourists
2 seconds, 256 megabytes

There are n cities in Cyberland, numbered from 1 to n, connected by m bidirectional roads. The j-th road connects city a
and b .

For tourists, souvenirs are sold in every city of Cyberland. In particular, city i sell it at a price of w .

Now there are q queries for you to handle. There are two types of queries:

"C a w": The price in city a is changed to w.
"A a b": Now a tourist will travel from city a to b. He will choose a route, he also doesn't want to visit a city twice. He
will buy souvenirs at the city where the souvenirs are the cheapest (possibly exactly at city a or b). You should output
the minimum possible price that he can buy the souvenirs during his travel.

More formally, we can define routes as follow:

A route is a sequence of cities [x , x , ..., x], where k is a certain positive integer.
For any 1 ≤ i < j ≤ k, x  ≠ x .
For any 1 ≤ i < k, there is a road connecting x and x .
The minimum price of the route is min(w , w , ..., w).
The required answer is the minimum value of the minimum prices of all valid routes from a to b.

Input
The first line of input contains three integers n, m, q (1 ≤ n, m, q ≤ 10), separated by a single space.

Next n lines contain integers w (1 ≤ w  ≤ 10).

Next m lines contain pairs of space-separated integers a and b (1 ≤ a , b  ≤ n, a  ≠ b).

It is guaranteed that there is at most one road connecting the same pair of cities. There is always at least one valid route
between any two cities.

Next q lines each describe a query. The format is "C a w" or "A a b" (1 ≤ a, b ≤ n, 1 ≤ w ≤ 10).

Output
For each query of type "A", output the corresponding answer.

input

3	3	3
1
2
3
1	2
2	3
1	3
A	2	3
C	1	5
A	2	3

input

7	9	4
1
2
3
4
5
6
7
1	2
2	5
1	5
2	3
3	4
2	4
5	6
6	7
5	7
A	2	3
A	6	4
A	6	7
A	3	3

For the second sample, an optimal routes are:

From 2 to 3 it is [2, 3].

From 6 to 4 it is [6, 5, 1, 2, 4].

From 6 to 7 it is [6, 5, 7].

From 3 to 3 it is [3].

j
j

i

1 2 k

i j

i i + 1

x1 x2 xk

5

i i
9

j j j j j j

9

output

1
2

output

2
1
5
3

2/27/19, 10)53 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
2.0 s, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input

5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output
1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output
2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input

5	2
1	2
2	3
3	4
2	5

input

5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output

2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input

2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input

4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output

1	3
-1	-1

output

0	4
-1	-1
-1	-1
0	2
0	2

F. Tourists
2 seconds, 256 megabytes

There are n cities in Cyberland, numbered from 1 to n, connected by m bidirectional roads. The j-th road connects city a
and b .

For tourists, souvenirs are sold in every city of Cyberland. In particular, city i sell it at a price of w .

Now there are q queries for you to handle. There are two types of queries:

"C a w": The price in city a is changed to w.
"A a b": Now a tourist will travel from city a to b. He will choose a route, he also doesn't want to visit a city twice. He
will buy souvenirs at the city where the souvenirs are the cheapest (possibly exactly at city a or b). You should output
the minimum possible price that he can buy the souvenirs during his travel.

More formally, we can define routes as follow:

A route is a sequence of cities [x , x , ..., x], where k is a certain positive integer.
For any 1 ≤ i < j ≤ k, x  ≠ x .
For any 1 ≤ i < k, there is a road connecting x and x .
The minimum price of the route is min(w , w , ..., w).
The required answer is the minimum value of the minimum prices of all valid routes from a to b.

Input
The first line of input contains three integers n, m, q (1 ≤ n, m, q ≤ 10), separated by a single space.

Next n lines contain integers w (1 ≤ w  ≤ 10).

Next m lines contain pairs of space-separated integers a and b (1 ≤ a , b  ≤ n, a  ≠ b).

It is guaranteed that there is at most one road connecting the same pair of cities. There is always at least one valid route
between any two cities.

Next q lines each describe a query. The format is "C a w" or "A a b" (1 ≤ a, b ≤ n, 1 ≤ w ≤ 10).

Output
For each query of type "A", output the corresponding answer.

input

3	3	3
1
2
3
1	2
2	3
1	3
A	2	3
C	1	5
A	2	3

input

7	9	4
1
2
3
4
5
6
7
1	2
2	5
1	5
2	3
3	4
2	4
5	6
6	7
5	7
A	2	3
A	6	4
A	6	7
A	3	3

For the second sample, an optimal routes are:

From 2 to 3 it is [2, 3].

From 6 to 4 it is [6, 5, 1, 2, 4].

From 6 to 7 it is [6, 5, 7].

From 3 to 3 it is [3].

j
j

i

1 2 k

i j

i i + 1

x1 x2 xk

5

i i
9

j j j j j j

9

output

1
2

output

2
1
5
3

2/27/19, 10)53 PMProblems - Codeforces

Page 1 of 1file:///Users/sleator/Sync/contest-work/our-server/190227/problems/problems.html

15-295 Spring 2019 #6 Trees

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov
The only programming contests Web 2.0 platform

A. Valera and Elections
2.0 s, 256 megabytes

The city Valera lives in is going to hold elections to the city Parliament.

The city has n districts and n - 1 bidirectional roads. We know that from any district there is a path along the roads to any
other district. Let's enumerate all districts in some way by integers from 1 to n, inclusive. Furthermore, for each road the
residents decided if it is the problem road or not. A problem road is a road that needs to be repaired.

There are n candidates running the elections. Let's enumerate all candidates in some way by integers from 1 to n,
inclusive. If the candidate number i will be elected in the city Parliament, he will perform exactly one promise — to repair all
problem roads on the way from the i-th district to the district 1, where the city Parliament is located.

Help Valera and determine the subset of candidates such that if all candidates from the subset will be elected to the city
Parliament, all problem roads in the city will be repaired. If there are several such subsets, you should choose the subset
consisting of the minimum number of candidates.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of districts in the city.

Then n - 1 lines follow. Each line contains the description of a city road as three positive integers x , y , t (1 ≤ x , y  ≤ n,
1 ≤ t  ≤ 2) — the districts connected by the i-th bidirectional road and the road type. If t equals to one, then the i-th road
isn't the problem road; if t equals to two, then the i-th road is the problem road.

It's guaranteed that the graph structure of the city is a tree.

Output
In the first line print a single non-negative number k — the minimum size of the required subset of candidates. Then on the
second line print k space-separated integers a , a , ... a — the numbers of the candidates that form the required subset.
If there are multiple solutions, you are allowed to print any of them.

input
5
1	2	2
2	3	2
3	4	2
4	5	2

input
5
1	2	1
2	3	2
2	4	1
4	5	1

input

5
1	2	2
1	3	2
1	4	2
1	5	2

5

i i i i i
i i

i

1 2 k

output
1
5	

output
1
3	

output
4
5	4	3	2	

B. Fools and Roads
2 seconds, 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and
connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities
there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path
(or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the
roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many
distinct fools can go on it.

Note how the fools' paths are given in the input.

Input
The first line contains a single integer n (2 ≤ n ≤ 10) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u , v (1 ≤ u , v  ≤ n, u  ≠ v), that means that there is a
road connecting cities u and v .

The next line contains integer k (0 ≤ k ≤ 10) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a , b (1 ≤ a , b  ≤ n). That
means that the fool number 2i - 1 lives in city a and visits the fool number 2i, who lives in city b . The given pairs describe
simple paths, because between every pair of cities there is only one simple path.

Output
Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can
go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

input
5
1	2
1	3
2	4
2	5
2
1	4
3	5

input
5
3	4
4	5
1	4
2	4
3
2	3
1	3
3	5

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and
fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the
third road goes the fool number 3, and on the fourth one goes fool number 1.

5

i i i i i i
i i

5

i i i i
i i

output
2	1	1	1	

output
3	1	1	1	

C. Distance in Tree
3 seconds, 512 megabytes

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a
distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.

Input
The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required
distance between the vertices.

Next n - 1 lines describe the edges as "a b " (without the quotes) (1 ≤ a , b  ≤ n, a  ≠ b), where a and b are the vertices
connected by the i-th edge. All given edges are different.

Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams
or the %I64d specifier.

input

5	2
1	2
2	3
3	4
2	5

input

5	3
1	2
2	3
3	4
4	5

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

i i i i i i i i

output
4

output

2

Statement is not available on English languageStatement is not available on English language

E. Conveyor Belts
3 seconds, 256 megabytes

Automatic Bakery of Cyberland (ABC) recently bought an n × m rectangle table. To serve the diners, ABC placed seats
around the table. The size of each seat is equal to a unit square, so there are 2(n + m) seats in total.

ABC placed conveyor belts on each unit square on the table. There are three types of conveyor belts: "^", "<" and ">". A
"^" belt can bring things upwards. "<" can bring leftwards and ">" can bring rightwards.

Let's number the rows with 1 to n from top to bottom, the columns with 1 to m from left to right. We consider the seats
above and below the top of the table are rows 0 and n + 1 respectively. Also we define seats to the left of the table and to
the right of the table to be column 0 and m + 1. Due to the conveyor belts direction restriction there are currently no way
for a diner sitting in the row n + 1 to be served.

Given the initial table, there will be q events in order. There are two types of events:

"A x y" means, a piece of bread will appear at row x and column y (we will denote such position as (x, y)). The bread
will follow the conveyor belt, until arriving at a seat of a diner. It is possible that the bread gets stuck in an infinite loop.
Your task is to simulate the process, and output the final position of the bread, or determine that there will be an infinite
loop.
"C x y c" means that the type of the conveyor belt at (x, y) is changed to c.

Queries are performed separately meaning that even if the bread got stuck in an infinite loop, it won't affect further queries.

Input
The first line of input contains three integers n, m and q (1 ≤ n ≤ 10 , 1 ≤ m ≤ 10, 1 ≤ q ≤ 10), separated by a space.

Next n lines, each line contains m characters, describing the table. The characters can only be one of "<^>".

Next q lines, each line describes an event. The format is "C x y c" or "A x y" (Consecutive elements are separated by a
space). It's guaranteed that 1 ≤ x ≤ n, 1 ≤ y ≤ m. c is a character from the set "<^>".

There are at most 10000 queries of "C" type.

Output
For each event of type "A", output two integers tx, ty in a line, separated by a space, denoting the destination of (x, y) is
(tx, ty).

If there is an infinite loop, you should output tx = ty =  - 1.

input

2	2	3
>>
^^
A	2	1
C	1	2	<
A	2	1

input

4	5	7
><<^<
^<^^>
>>>^>
>^>>^
A	3	1
A	2	2
C	1	4	<
A	3	1
C	1	2	^
A	3	1
A	2	2

For the first sample:

If the bread goes from (2, 1), it will go out of the table at (1, 3).

After changing the conveyor belt of (1, 2) to "<", when the bread goes from (2, 1) again, it will get stuck at "><", so output
is ( - 1,  - 1).

5 5

output

1	3
-1	-1

output

0	4
-1	-1
-1	-1
0	2
0	2

F. Tourists
2 seconds, 256 megabytes

There are n cities in Cyberland, numbered from 1 to n, connected by m bidirectional roads. The j-th road connects city a
and b .

For tourists, souvenirs are sold in every city of Cyberland. In particular, city i sell it at a price of w .

Now there are q queries for you to handle. There are two types of queries:

"C a w": The price in city a is changed to w.
"A a b": Now a tourist will travel from city a to b. He will choose a route, he also doesn't want to visit a city twice. He
will buy souvenirs at the city where the souvenirs are the cheapest (possibly exactly at city a or b). You should output
the minimum possible price that he can buy the souvenirs during his travel.

More formally, we can define routes as follow:

A route is a sequence of cities [x , x , ..., x], where k is a certain positive integer.
For any 1 ≤ i < j ≤ k, x  ≠ x .
For any 1 ≤ i < k, there is a road connecting x and x .
The minimum price of the route is min(w , w , ..., w).
The required answer is the minimum value of the minimum prices of all valid routes from a to b.

Input
The first line of input contains three integers n, m, q (1 ≤ n, m, q ≤ 10), separated by a single space.

Next n lines contain integers w (1 ≤ w  ≤ 10).

Next m lines contain pairs of space-separated integers a and b (1 ≤ a , b  ≤ n, a  ≠ b).

It is guaranteed that there is at most one road connecting the same pair of cities. There is always at least one valid route
between any two cities.

Next q lines each describe a query. The format is "C a w" or "A a b" (1 ≤ a, b ≤ n, 1 ≤ w ≤ 10).

Output
For each query of type "A", output the corresponding answer.

input

3	3	3
1
2
3
1	2
2	3
1	3
A	2	3
C	1	5
A	2	3

input

7	9	4
1
2
3
4
5
6
7
1	2
2	5
1	5
2	3
3	4
2	4
5	6
6	7
5	7
A	2	3
A	6	4
A	6	7
A	3	3

For the second sample, an optimal routes are:

From 2 to 3 it is [2, 3].

From 6 to 4 it is [6, 5, 1, 2, 4].

From 6 to 7 it is [6, 5, 7].

From 3 to 3 it is [3].

j
j

i

1 2 k

i j

i i + 1

x1 x2 xk

5

i i
9

j j j j j j

9

output

1
2

output

2
1
5
3

