Problem Set 1 Overture 156-295 Spring 2020

A. Pots

time limit per test: 2 seconds
memory limit per test: 256 megabytes

In a cooking pot shop sales decreased dramatically. Marketing managers of the shop did a research and found out that the reason was frying pans.
People stopped buying pots as pans are both cheaper and more compact during storage. The Board of Directors made a decision to extent assortment
and start selling also pans. The first batch is already ordered.

Warehouse logistics department was given a task to find a place for the new goods. Now there are N pots in the warehouse. Every pot has a diameter
D;. There is the only way to save space — it is possible to embed into any pot another one of a smaller diameter, into which in turn other can be
embedded.

Help the logistics specialist to find a minimal number of pots in the warehouse in which all other pots can be embedded.

Input
The first line contains a single number N (1 < N < 1000). The second line contains N integers D; separated by spaces (1 < D; < 10 000).

Output
Output the obtained number.

Examples
input output

5 2
75252

Problem Set 1 Overture 15-295 Spring 2020

B. Row and Column Swaps

time limit per test: 5 seconds
memory limit per test: 256 megabytes

Given an n X n matrix with integer entries, support the following three operations.
R a b:swap all entries in row @ and row b;
C a b:swap all entries in column a and column b;
A a b: query the entry in row @ and column b.

Input
The first line consists of two integers 1 and k, where 7 is the size of the matrix and k is the total number of operations. Each of the following # lines
contains # integers, which are entries in the in the initial matrix. Each of the following k lines contains an operation, as stated above.

1 <n<1000,1 < k <500000, all entries in the matrix are in [0, 109].

Output
For each query, output a line which is the answer.
Example
input output
8
9
6

>r>O0O0>NbhHRW
WNNWWoLoULIN UL
NNWNNOO W

C. Maximizing the Bitwise AND

time limit per test: 1 second
memory limit per test: 256 megabytes

Given an array with 1 non-negative integers ap, az, ... , a,, choose 1 < i < j < n to maximize the bitwise AND of @; and a;. Note that choosing i
and j such that @; = a; is valid, but we must have i # j.

Input

The first line contains a single integer n. 2<n< 105. The second line contains n integers which are a1, az, ..., a,, with 0<a < 109.
Output
A single line with a single integer which is the maximum bitwise value we can achieve.
Examples

input output
3 1

121

input output
5 1022

1024 1023 1022 1021 1020

Note
See https://en.wikipedia.org/wiki/Bitwise_operation#AND for a definition of bitwise AND.

D. Uranium Cubes
time limit per test: 1 second

memory limit per test: 256 megabytes

Thereare 1 < n < 105 small cubes of uranium located on a line. The coordinate of the i-th cube is a;. Several cubes can be located at the same
place on the line. It is guaranteed that 1 < a; < L, where L < 10° is specified. There's also a specified bound 0 < B < 10'>, whose meaning
is explained below.

A subset S of the cubes, and a location p along the line are selected. The selected cubes are moved to the location p. The cost of doing these moves
is the sum over all the cubes in .S’ of the distance that they move. The move cost must be at most B.

Your goal is to compute the maximum size of the set .S so that this is possible. Obviously you're trying to figure out if you can get a critical mass of
uranium together within budget, because you want to blow up the world. Duh.

Input
The first line contains three integers n, L and B. Each of the following 7 lines contains a single integer a; .

Output
An integer, which is the maximum number of cubes we can get together within budget.

Examples
input output
5206 3

input output

Note
In the first example, set p = 11 and move cubes with coordinates 10, 12 and 14. Doing so costs 1 + 1 + 3 = 5 which is within our budget of 6.

In the second example, set p = 2 and collect all three cubes there for a cost of 2.

E. How Big is that Set?

time limit per test: 1 second

memory limit per test: 256 megabytes

You're given a number N > O with no leading zeros and at most 50 digits. Consider the set of numbers S(IN) defined as follows: A number
Z € S(N) if and only if you can construct Z using the following procedure: (1) Start with IN. (2) Delete all the zero digits. (3) Permute the remaining
digits arbitrarily. (4) Insert any number of zeros arbitrarily into this string of digits, except at the beginning.

Your goal is to compute the number of elements of S(NN) that are less than N, that is compute |S(N) (1{1,2, ..., N — 1}| See the example

below for clarification.

Input
A single line containing N .

Output
A single line with the answer. It's guaranteed that the answer is at most 283 — 1.

Examples

input output

1020 7

input output

20120 21

Note
In the first example, the set S(1020) = {12, 21, 102, 120, 201, 210, 1002, 1020,

the answer is 7.

}, where the elements are sorted in increasing order. Thus

F. Number of Components
time limit per test: 8 seconds

memory limit per test: 256 megabytes

Suppose that we have an array of n distinct numbers ay, az, ..., a,. Let's build a graph on n vertices as follows: for every pair of vertices i < j let's
connect i and j with an edge, if @; < a;. Let's define weight of the array to be the number of connected components in this graph. For example,
weight of array [1, 4, 2] is 1, weight of array [5, 4, 3] is 3.

You have to perform g queries of the following form — change the value at some position of the array. After each operation, output the weight of the
array. Updates are not independent (the change stays for the future).

Input
The first line contains two integers nand g (1 < n,g <5 - 105) — the size of the array and the number of queries.

The second line contains 7 integers a1, as, ..., a, (1 < a; < 106) — the initial array.
Each of the next ¢ lines contains two integers pos and x (1 < pos < n,1 < x < 108, x + @pos)- It means that you have to make @p; = X.
It's guaranteed that at every moment of time, all elements of the array are different.

Output
After each query, output the weight of the array.

Example
input output

53 3
50 40 30 20 10 3
125 4
345
148

Note
After the first query array looks like [25, 40, 30, 20, 10], the weight is equal to 3.

After the second query array looks like [25, 40, 45, 20, 10], the weight is still equal to 3.

After the third query array looks like [48, 40, 45, 20, 10], the weight is equal to 4.

